Начертательная геометрия: конспект лекций.

3. Прямая, лежащая в данной плоскости.

Прямая принадлежит плоскости Р в том случае, если любые две ее точки лежат в данной плоскости.

Например, если следы прямой лежат на одноименных следах плоскости, то прямая лежит в этой плоскости (рис. 39).

Рассмотрим построение прямой, лежащей в данной плоскости Р.

Первый способ. Возьмем на следах Рh и Рv по одной точке (рис. 40) и рассмотрим их как следы искомой прямой.

Рассматривая следы прямой, легко построить ее проекции.

Второй способ. Одну проекцию прямой, например горизонтальную 1, можно провести (рис. 40). Точки ее пересечения со следом Рh и осью х определят горизонтальные проекции h и v следов искомой прямой. Если соединить прямой фронтальные проекции и следов, можно получить фронтальную проекцию 1́.

Начертательная геометрия: конспект лекций